Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Stem Cell Reports ; 18(6): 1308-1324, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: covidwho-20242194

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily infects the respiratory tract, but pulmonary and cardiac complications occur in severe coronavirus disease 2019 (COVID-19). To elucidate molecular mechanisms in the lung and heart, we conducted paired experiments in human stem cell-derived lung alveolar type II (AT2) epithelial cell and cardiac cultures infected with SARS-CoV-2. With CRISPR-Cas9-mediated knockout of ACE2, we demonstrated that angiotensin-converting enzyme 2 (ACE2) was essential for SARS-CoV-2 infection of both cell types but that further processing in lung cells required TMPRSS2, while cardiac cells required the endosomal pathway. Host responses were significantly different; transcriptome profiling and phosphoproteomics responses depended strongly on the cell type. We identified several antiviral compounds with distinct antiviral and toxicity profiles in lung AT2 and cardiac cells, highlighting the importance of using several relevant cell types for evaluation of antiviral drugs. Our data provide new insights into rational drug combinations for effective treatment of a virus that affects multiple organ systems.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Enzima Convertidora de Angiotensina 2 , Células Madre , Antivirales/farmacología , Antivirales/uso terapéutico , Pulmón
2.
Viruses ; 14(12)2022 11 24.
Artículo en Inglés | MEDLINE | ID: covidwho-2123875

RESUMEN

SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Vaccination, supported by social and public health measures, has proven efficacious for reducing disease severity and virus spread. However, the emergence of highly transmissible viral variants that escape prior immunity highlights the need for additional mitigation approaches. Heparin binds the SARS-CoV-2 spike protein and can inhibit virus entry and replication in susceptible human cell lines and bronchial epithelial cells. Primary infection predominantly occurs via the nasal epithelium, but the nasal cell biology of SARS-CoV-2 is not well studied. We hypothesized that prophylactic intranasal administration of heparin may provide strain-agnostic protection for household contacts or those in high-risk settings against SARS-CoV-2 infection. Therefore, we investigated the ability of heparin to inhibit SARS-CoV-2 infection and replication in differentiated human nasal epithelial cells and showed that prolonged exposure to heparin inhibits virus infection. Furthermore, we establish a method for PCR detection of SARS-CoV-2 viral genomes in heparin-treated samples that can be adapted for the detection of viruses in clinical studies.


Asunto(s)
Células Epiteliales , Heparina , SARS-CoV-2 , Replicación Viral , Humanos , COVID-19 , Células Epiteliales/virología , Heparina/farmacología , Pandemias , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Replicación Viral/efectos de los fármacos
3.
EJHaem ; 3(2): 326-334, 2022 May.
Artículo en Inglés | MEDLINE | ID: covidwho-1750388

RESUMEN

Coronavirus disease 2019 (COVID-19) patients have increased thrombosis risk. With increasing age, there is an increase in COVID-19 severity. Additionally, adults with a history of vasculopathy have the highest thrombotic risk in COVID-19. The mechanisms of these clinical differences in risk remain unclear. Human umbilical vein endothelial cells (HUVECs) were infected with SARS-CoV-2, influenza A/Singapore/6/86 (H1N1) or mock-infected prior to incubation with plasma from healthy children, healthy adults or vasculopathic adults. Fibrin on surface of cells was observed using scanning electron microscopy, and fibrin characteristics were quantified. This experiment was repeated in the presence of bivalirudin, defibrotide, low-molecular-weight-heparin (LMWH) and unfractionated heparin (UFH). Fibrin formed on SARS-CoV-2 infected HUVECs was densely packed and contained more fibrin compared to mock-infected cells. Fibrin generated from child plasma was the thicker than fibrin generated in vasculopathic adult plasma (p = 0.0165). Clot formation was inhibited by LMWH (0.5 U/ml) and UFH (0.1-0.7 U/ml). We show that in the context of the SARS-CoV-2 infection on an endothelial culture, plasma from vasculopathic adults produces fibrin clots with thinner fibrin, indicating that the plasma coagulation system may play a role in determining the thrombotic outcome of SARS-CoV-2 infection. Heparinoid anticoagulants were most effective at preventing clot formation.

4.
Cell ; 184(8): 2167-2182.e22, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1135274

RESUMEN

Cardiac injury and dysfunction occur in COVID-19 patients and increase the risk of mortality. Causes are ill defined but could be through direct cardiac infection and/or inflammation-induced dysfunction. To identify mechanisms and cardio-protective drugs, we use a state-of-the-art pipeline combining human cardiac organoids with phosphoproteomics and single nuclei RNA sequencing. We identify an inflammatory "cytokine-storm", a cocktail of interferon gamma, interleukin 1ß, and poly(I:C), induced diastolic dysfunction. Bromodomain-containing protein 4 is activated along with a viral response that is consistent in both human cardiac organoids (hCOs) and hearts of SARS-CoV-2-infected K18-hACE2 mice. Bromodomain and extraterminal family inhibitors (BETi) recover dysfunction in hCOs and completely prevent cardiac dysfunction and death in a mouse cytokine-storm model. Additionally, BETi decreases transcription of genes in the viral response, decreases ACE2 expression, and reduces SARS-CoV-2 infection of cardiomyocytes. Together, BETi, including the Food and Drug Administration (FDA) breakthrough designated drug, apabetalone, are promising candidates to prevent COVID-19 mediated cardiac damage.


Asunto(s)
COVID-19/complicaciones , Cardiotónicos/uso terapéutico , Proteínas de Ciclo Celular/antagonistas & inhibidores , Cardiopatías/tratamiento farmacológico , Quinazolinonas/uso terapéutico , Factores de Transcripción/antagonistas & inhibidores , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Citocinas/metabolismo , Femenino , Cardiopatías/etiología , Células Madre Embrionarias Humanas , Humanos , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción/metabolismo , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA